

Lightning NO_x Production Estimated from OMI and TROPOMI NO₂ Observations

Kenneth Pickering¹, Dale Allen¹, Eric Bucsela²,
Robert Holzworth³, Nickolay Krotkov⁴,
Henk Eskes⁵, Jos van Geffen⁵, Pepijn Veefkind⁵, William Koshak⁶

¹ Department of Atmospheric and Oceanic Science, University of Maryland ² SRI, International

Department of Earth Science, University of Washington
 NASA Goddard Space Flight Center

⁵ KNMI

⁶ NASA Marshall Space Flight Center

OMI LNO_x Algorithm

$$V_{LNOx}^* = \frac{S_{total} - Vstra_t \times AMFstrat}{AMF_{LNOx}}$$

- V_{LNOx}* = Vertical column amount of NO_x in deep convective clouds from recent lightning and background. Total slant column NO₂ (S_{total}) from spectral fitting (OMI V3.0 Standard Product)
- V_{strat}: Daily zonally-averaged stratospheric NO₂ vertical column derived from OMI Standard Product and stratospheric Air Mass Factor (AMF_{strat})
- AMF_{LNOX} converts the slant column LNO₂ to vertical column LNO_x. AMFs from radiative transfer modeling using assumed profile shapes appropriate

for LNO₂ and LNO_x, cloud information, surface albedo. Monthly are from Global Modeling Initiative (GMI) chemical transport model, selected from days with significant NO₂ from lightning.

Since V_{LNOx}* contains contributions of sources other than recent lightning, in-cloud tropospheric background must be considered.

Analysis Methods

- <u>Daily analysis</u> conducted on an array of 1 x 1 degree grid cells for June, July, August 2007 – 2011: Gulf of Mexico (Pickering et al., 2016, *JGR*); three midlatitude continental regions (Bucsela et al., 2019, in press); three tropical focus areas (Allen et al., 2019, in revision).
- Analysis performed using OMI pixels with large values (≥ 0.97) of <u>Cloud</u> <u>Radiance Fraction (CRF)</u> and with <u>Optical Centroid Pressure (OCP</u> ≤ 500 hPa) sufficiently low to indicate deep convective cloud.
- Analysis conducted only for grid cells with > specified minimum number (3) of OMI pixels meeting CRF and OCP criteria in order to reduce noise.
- Analysis conducted only for grid cells with non-zero flashes in <u>counting</u> <u>window</u> (time period prior to OMI overpass ≤ median residence time for upper tropospheric air in grid cell). Gulf of Mexico: 3 hr; Mid-latitudes: 1 hr; Tropics: tested 1 to 6 hours
- Flash data are from World-Wide Lightning Location Network (WWLLN) corrected for detection efficiency.

Mid-latitude Analysis

 V_{LNOx} : vertical column of NO_x from recent lightning obtained by subtracting background (assumed to be given by temporal average of V_{LNOx}^* over non-flashing days meeting the cloud criteria) from V_{LNOx}^* for flashing grid cells

WWLLN flashes in 1-hour window prior to OMI overpass; adjusted for detection efficiency

Red boxes show North American, European, and East Asian regions for which LNOx Production Efficiency (PE, mol/fl) are computed

Regression of Binned Mid-latitude Data

Linear fit: y = a + bx

Power law fit: $y = \alpha x^{\beta}$

Power law provides better fit to data than linear regression; suggests lower LNO_x PE at higher flash rates.

Implying lesser LNO_x production per flash with smaller flash extent, the above result is consistent with data from ground-based Lightning Mapping Arrays, which show inverse relation between flash rate and flash extent.

Region	<i>r</i>	β	X ² r (linear)	χ^2 r (power)	PE _{avg} (mol/fl)	← Computed by summing LNO _x and flashes over the five	
N. Amer.	0.59	0.42	5.79	1.84	200 ± 110	seasons	
Europe	0.42	0.39	2.04	1.40	150 ± 90	Results assume:	
E. Asia	0.86	0.51	5.77	1.78	160 ± 100	 3-hr NO_x lifetime (Nault et al. 2017) WWLLN calibration relative to LIS 	
Combined	0.87	0.45	10.1	1.49	180 ± 100	 Correction for model NO/NO_x bias (Silvern et al., 2018) 	

Tropics June, July, Aug 2007 - 2011

Tropics OMI LNOx* vs WWLLN All 6-hr Flash window

v3 crf97 dzstrat ocp500 minpixels3 WWLLNv23

Mean of five individual JJA season analyses

Tropics: $162 \pm 66 \text{ mol/fl}$

Tropical Americas: 120 ± 47

Tropical Africa: 107 ± 39

Tropical Pacific: 263 ± 97

Continental: 94 ± 45

Marine: 425 ± 217

- ← 1, 2, 3, 4, 6-hr values weighted by explained variances
- ← 3-hr lifetime assumed (Nault et al., 2017)
- ← Correction for WWLLN bias relative to LIS
- ← 20% adjustment for AMF low bias due to model NO/NO2 bias (Silvern et al., 2018)

Background assumed to be represented by y-intercept of regression

TROPOMI LNO_x PE Algorithm – Individual Storm Analyses

Tropospheric Column Method: $V_{tropLNOxP} = [V_{tropNO2} \times AMF_{trop}] / AMF_{LNOx}$ Tropospheric Residual Method: $V_{tropLNOxP} = [S_{NO2} - V_{stratNO2} \times AMF_{strat}] / AMF_{LNOx}$

 S_{NO2} = Total NO₂ slant column for individual deep convective cloud (DCC) pixels within ROI

 $V_{\text{tropNO2}} \equiv \text{Tropospheric NO}_2$ vertical column for DCC pixels within ROI with a quality flag > 0.50

V_{stratNO2} **≡** Stratospheric vertical column of NO₂ for DCC pixels within ROI

AMF_{strat} **≡ Stratospheric** air mass factor for DCC pixels within ROI

 $AMF_{LNOx} \equiv AMF$ converting tropospheric slant column of NO_2 to vertical column of LNO_x 0.46 after *Beirle et al.* (2009, ACP)

PE =
$$[V_{tropLNOx} \times \Sigma \text{ AreaP}] / [N_A \times \Sigma \text{ (Flashes } \times exp(-t / \tau))]$$

 $PE \equiv LNO_x Production Efficiency (moles <math>NO_x/flash$)

V_{tropLNOx} ≡ Median V_{tropLNOxP} over flashing pixels in ROI minus 10th percentile of V_{tropLNOxP} over non-flashing pixels AreaP ≡ Area of individual pixels within ROI that satisfy the deep convection constraints (DCC) of cloud fraction > 0.90 and cloud pressure < 500 hPa; includes embedded missing pixels

N_A ≡ Avogadro's Number

Flashes ≡ Number of GOES-16 GLM flashes within ROI during 5-hour period before TROPOMI overpass time t ≡ Age of individual flashes

 $\tau \equiv$ Lifetime of NO₂ in near field of convection (assumed to be 3 hours)

Flashes & LNOx: 20180628 Convective System (TROPOMI Overpass time =1800-1809UT) v1.2 Cld_frac A> 0.90=137665 km2 v2.1_test Cld_frac A> 0.90=137809 km2 37 -90 -88 -92 -82 38 GLM Flashes1309-1809UT nF=74332 nFa=39017 v2.1_test LNOx_3.47 q> 0.50 Nvalid =393 -92 -90 -88 -86 -92 -90 -88 -86 -84 v1.2 LNOxr 1.57 q> 0.00 Nvalid =597 v2.1_test LNOxr 2.24 q> 0.00 Nvalid =1491 -90 -88 -90 -84 -86 -92

petamolec cm-2⁸ 10 12 15 99 10 10 10 12 15 P<500 hPa CRF> 0.90 Tau=3 Hrs

² petamolec cm-2

V1.2 \rightarrow V1.3 Pixels with AMF < 0.1 AMF_g are now included

V1.3 → V2.1 test
Saturation constraint relaxed

Summary of LNO_x PE from TROPOMI for Selected US Storms

From tropospheric From resi NO₂ product V2.1 test V2.1 test

From residual NO₂ product V2.1 test

YYYYMMDD	Location	N _{valid} pixels (q>0.5)	LNO _x PE (mol/F)	N _{valid} pixels (q>0.16)	LNO _x PE (mol/F)
20180628	Tennessee	393	224	1491	273
20180628	Iowa	645	247	1901	1011
20180720	Indiana/Ohio	653	64	735	63
20180722	Northern FL	917	121	1178	126
20180726	Off of NC coast	1520	288	1638	270
20180731	Southern MS	1275	145	1547	130
20190608	Southeast US	4013	180	4245	184

Summary

- No significant difference found between LNO_x PE in mid-latitudes and tropics in boreal summer: 180 ± 100 mol/fl mid-latitudes and 162 ± 66 mol/fl tropics
- Mid-latitude LNO_x production is proportional to a power function of lightning flash rate, with exponent between 0.4 and 0.5. Implies that the PE is smaller in storms with more frequent flashes
- Mean PE largest in low-flash rate tropical Pacific region and smallest in high flash rate tropical Africa
- TROPOMI V2.1 test NO₂ algorithm over deep highly-reflective clouds is best version yet, but operational V1.3 (late March 2019 onward) may also be suitable for LNO_x analysis. Individual storm analyses yield reasonable PE values.